WALPINI - Sera etapa cu etapa


ghia_don a spus:
Un dezumidificator din acela am pus si eu in balcon, unde din cauza agomerarii de plante si a acvariului imi transpirau geamurile foarte mult...Nu dauneaza plantelor, cel putin pina acum n-am vazut nimic suspect...vad ca isi face datoria...dar mi-ar mai trebui unul...ca sa dispara broboanele de apa si de pe timplarie..
ah , atunci o sa-l incerc si eu

mersi pentru raspuns :D


Well-Known Member
alea sunt o mare vrajeala de comert si nu ce ai nevoie tu , la o adica poti pune un ghiveci mare cu sare ca tot atata apa strangi ...ia zii , unde se duce apa colectata de "granule" , nu cumva tot acolo in camera sta ...mai gandeste-te ca e doar comercial :rofl: :rofl: :rofl:


pana n-am cumparat-o n-am stiut cum functioneaza , scrie ca e pentru 30m cubi , eu am vreo 100 , la mare rezultat nu ma astept oricum


Well-Known Member
Reducing Humidity in the Greenhouse
The fall and spring are times when humidity related diseases usually peak in greenhouses. Sunny days increase the transpiration of moisture from leaf surfaces and evaporation from soil. The warm air holds the moisture in the vapor form. At night as the air cools to the dew point, condensation occurs and water droplets are formed on cooler surfaces such as the leaves and glazing. This moisture promotes the germination of fungal pathogen spores such as Botrytis and powdery mildew. Dripping water from condensation on the greenhouse covering also wets plant surfaces and spreads plant pathogens from plant to plant by splashing soil and plant debris. The key to successfully suppressing diseases is to keep the plant canopy dry, especially from dusk to dawn. This is accomplished through cultural practices and environmental control strategies.

Relationship Between Temperature and Humidity
The amount of moisture in the air is generally expressed as relative humidity (RH), which is the ratio between the weight of moisture actually present in the air and the total moisture-holding capacity of a unit volume of air at a specific temperature and pressure. This term can sometimes be misleading, because it is temperature-dependent. Warm air has a higher moisture-holding capacity than cooler air; therefore as the temperature of air increases, the relative humidity decreases even though the amount of water remains constant. Air at 70° F will hold twice as much moisture as air at 50°F. In the range of temperatures encountered in a greenhouse, for every 20° F rise in dry bulb temperature, the water-holding capacity of the air doubles, and the relative humidity is reduced by one-half. This relationship is important in managing humidity in the greenhouse.

Dewpoint temperature indicates the temperature at which water will begin to condense out of moist air. Condensation on plants occurs when leaf surface temperature is below dew point. This is when there is too much moisture in the air to remain in the vapor state. The moisture will fall out and condense as free-moisture on surfaces that are at or below the dewpoint temperature. In other words, condensation will occur on the coldest surfaces first. The coldest surfaces will be the piping, door knobs, roof and eventually the plants. For example, when the greenhouse is 85% RH and 60°F, condensation occurs when leaf temperature is lower than 55°F. At 95 % RH and 60°F, condensation occurs when leaf temperature is only one degree lower than air temperature.

How To Reduce Humidity
Proper watering and adequate plant spacing, having well-drained floors, warming plants, moving air and venting moisture are ways to reduce humidity in greenhouses.

The least expensive method is to keep the greenhouse dry, especially going into the night, when the temperature drops. Puddling water on the greenhouse floor and water on leaf and growing media surfaces evaporate, which adds moisture to the greenhouse environment. Evaporation makes the environment humid and it takes away energy that is intended to keep a house warm.

Cultural Practices to Reduce Humidity
Cultural practices include watering just enough to prevent excess water on the floor, and watering early enough in the day to allow plant surfaces to dry before evening. The highest relative humidity in a greenhouse is generally found inside plant canopies, where moisture is generated from transpiration and trapped due to insufficient air movement. Adequate plant spacing and mesh benches will help to improve air circulation at the plant level.

Weeds also contribute to high humidity by holding moisture in the leaf canopy and generating moisture through transpiration. Maintain well-drained greenhouse floors that are free from weeds.

Bottom Heat
Bottom heat will improve air circulation inside plant canopies and will help to prevent condensation on leaf surfaces. The warm air that rises creates air movement around the plants. Bottom heat also keeps the plant surfaces warm, preventing condensation on the plants.

Anti-drip Plastic
The use of a wetting agent, either sprayed on the interior surface or as part of the formulation of the glazing on poly covered greenhouses can also help to reduce the humidity level. The moisture that condenses on the glazing will drain to the eave or foundation rather than forming droplets and dripping onto the plants.

Glass greenhouse with a steep roof pitch (6:12) will allow moisture to run off without a wetting agent. More condensation will occur on single glazing than with double glazing since the dew point is reached sooner.

Ventilation and Heating
A combination of ventilation and heating is also very important for reducing humidity. Ventilation allows the exchange of moist greenhouse air with drier air from outdoors. Heating is necessary to bring outdoor air up to optimum growing temperature, and also increases the capacity of the air to carry moisture, thus avoiding condensation. Neither practice alone is as efficient as both combined. Ventilation without heating would chill the greenhouse and the crop, and heating without venting the moist air would raise the temperature beyond optimum levels and result in excessive heating costs.

The method and time it takes for heating and venting will vary according to the heating and ventilation system in the greenhouse. To vent the humid air in greenhouses with vents, the heat should be turned on and the vents crack open an inch or so. When doing this the warmed air will hold more moisture (RH), escape from the greenhouse through the vents and be replaced with outside air of lower RH. This natural rising of the air will result in a greenhouse of lower relative humidity.

In houses with fans, the fans should be activated and operated for a few minutes and than the heater turned on to bring the air temperature up. The fans should then be shut off. A clock could be set to activate the fans. A relay may be needed to lock out the furnace or boiler until the fans shut off so that both the fans and heating system do not operate at the same time and flue gases are not drawn into the greenhouse.

The venting and heating cycle should be done two or three times per hour during the evening after the sun goes down and early in the morning at sunrise. The time it takes to exchange one volume of air depends on several factors including whether or not fans are used and, the size of the fans and vents. For some greenhouses it may take as little as 2-3 minutes air exchange. For greenhouses using natural ventilation, it may take 30 minutes or longer. Heating and venting can be effective even if it is cool and raining outside. Air at 50°F and 100% RH (raining) contains only half as much moisture as the greenhouse air at 70°F and 95% RH.

What is a Desirable Humidity Level?
To vent and heat the greenhouse most energy efficiently, growers might consider purchasing a device to measure humidity, and then heat and vent accordingly. The desirable humidity varies with temperature. Plants in warmer environments can tolerate higher relative humidity. The chart below provides corresponding temperature and relative humidity set points for disease prevention.

°F Humidity
50° 83%
61° 89%
68° 91%
86° 95%

What Does it Cost?
Based on 1,000 sq.ft. of greenhouse floor area (approximately 10,000 cubic feet of air) it would take 4,000 Btu of heat to raise the temperature of the air 20°F (for example from 50° to 70°). At $1.00 per gallon of fuel oil or $0.70 per therm of natural gas, this amounts to about $0.04 per cycle. Usually this is done two or three times per hour during the evening after the sun goes down and early in the morning at sunrise.

Air Movement
Air movement is another important consideration when managing diseases in the greenhouse. Air that is moving is continually mixed resulting in very small temperature differences. Adequate air movement around the plant occurs when the leaves move slightly. The moisture does not get a chance to condense on the leaf surfaces because the mixing action caused by the movement prevents the air along the surface from cooling to below the dew point. This results in less Botrytis.

When the greenhouse is heated with hot air furnaces, continuous air movement can be obtained by running the fans continuously. Some furnaces are equipped with a manual switch on the fan motor, others can be rewired by an electrician. If two furnaces are used, they should be located at opposite corners and set to direct the air in a circular pattern.

The fan-jet system can also be used to move air within a greenhouse. This involves a fan that is connected to a perforated plastic tube located below the ridge. The fan is set to run continuously and either draws in outside air through a louver or recirculates air within the greenhouse. The air in the tube is forced out through the small holes and mixes with the air in the greenhouse. Air circulation with this system is not as efficient as moving the entire air mass. Also, any hanging plants in the direct path of the air coming from the tube will dry out quickly.

Another system that gives good air circulation and mixing is horizontal air flow (HAF). Small fans (1/15 horsepower, 16" to 20" diameter) placed along the sides of the house push the air in one direction on one side and in the opposite direction on the other side. Fans should operate continuously except when the exhaust fans are operating.

Measuring humidity
The sling psychrometer is still one of the most accurate methods for determining relative humidity. This device uses two thermometers, one with a wick, contained in a holder that can be swung like a fan. Wetting the wick with water and rotating the thermometers for about a minute will give the wet-bulb and dry-bulb temperatures. After subtracting the wet-bulb temperature from the dry-bulb temperature to get the depression, the relative humidity can be determined (see chart below).

Sling psychrometers are available from greenhouse suppliers and scientific equipment stores for about $95. Humidity pocket meters or humidity pens are also available beginning at about $40. A recording hydrothermograph ($350-$700) provides a continuous chart of dry-bulb temperature and relative humidity. Although most older instruments used the human hair as the sensing element, new instruments use other materials such as polystyrene, nylon or cellulose acetate butyrate. Accuracy of humidity readings depends on good maintenance of the sensor.


din pacate nu pot sa spun ca temperatura inauntru a fost la ce m-am asteptat , nu e deloc cum scrie in linkul de walipini

la - 15 afara inauntru erau 0/-1 C dimineata , iar dupa ce faceam foc crestea la + 2/3 C

pe dupamasa obisnuea sa creasca pana la +5 , si findca trebuie sa aerisesc in fiecare zi iara scadea la 0 C

cum eu nu locuiesc acolo deobicei fac un foc mare dimineata si cam atat ca soba e destul de mica si in cateva ore oricum se stinge focul

am incercat cu brichete de rumegus sa vad daca tin mai mult decat lemnul de salcam , dar nu e absolut nici o diferenta , inca parca lemnele's mai bune (si mult mai ieftine)

umiditatea e de 98% deci nici asta nu ajuta cu nimic

oricum cea mai sensibila planta ce o am in sera e delonix-ul , si dupa cum vad eu nici una nu pare sa fi murit

ar mai trebui sa pun poze dar nu arata prea grozav , in multe locuri vopseaua a inceput sa cada , poate ar fi trebuit sa folosesc dispersit de exterior , ca n-am fost multumit sa dau doar cu var si am pus si doua straturi de dispersit alb Hera

nici iarba n-a crescut cum m-am asteptat , poate din cauza umiditatii mari si "traficului" prea intens

daca majoritatea plantelor n-o sa-mi moara eu o sa fiu multumit

deci dane

danero2004 a spus:

"It was about +1 C inside in the our coldest day with nighttime temperature -25 -27 C.
i call bullshit

fara nici un fel de incalzire e imposibil sa aiba temperatura asta

nu-s recente pozele, prima e din 1 noiembrie , ultima din 29 noiembrie

nu mai am 4 pisici ca una mi-a murit , a cazut in fantana si s-a inecat :(

in loc sa fac sera asta de rahat ar fi trebuit sa fac un capac pentru fantana


Well-Known Member
Nenea vuk :rofl: a avut postate poze de la el , ce sa crezi , el in schimb nu are usi sau geamuri e pur si simplu o groapa cu capac

alta chestie ... la mine in beci care e destul de mare, 21 mp , umiditatea in iarna 2009-2010 a fost 90-97 % si temp oscila ca nebuna cu pamant gol la baza

anuul 2010 aduce 10-15 cm de nisip uscat si pavele , rezultat o caldura connstanta , nu a mai scazut sub 8 grade si surpriza umezeala 65--70 (70 cand mai umblu la vin

Deci sunt f multumit , ff multa umezeala daunatoare venea din jos si cred ca e ca la om , nu lasa planta sa respire...incearca


pavele ?! pana iarna viitoare spre sa gasesc o solutie mai buna ca nu prea asi vrea sa umblu pe ciment in sera

si referitor la "groapa cu capac" , tot nu's prea convins , poate avea tevi de incalzire sau ceva , ca eu si daca am 2 usi si doua geamuri tot n-ar trebui sa fie asa de mare difereta


Active Member
Cine mă lămurește și pe mine? Nu înțeleg faza?

Unul este mulțumit, celălalt este dezamăgit.

Unul vorbește despre seră, celălalt despre beci. Unul încălzește, celălalt nu?

Sincer aș vrea să înțeleg: în poze văd geamuri, însă danero spune că vuk nu are geamuri...

Care sunt diferențele de "arhitectură" între cele două proiecte? Sunt chiar interesat de chestia asta.

Din poze eu văd o încăpere frumoasă albă, nouă, curată. Nu vreau să isc nicio cearta, doar vreau să înțeleg.


dan nu despre mine vorbea cand a zis ca n-are geamuri ci despre un ucrainian

diferenta de 'arhitectura' se vede clar in poze (pe care le gesesti undeva in topicul asta)

încăpere frumoasă albă, nouă, curată
mersi pentru compliment :oops:


Well-Known Member
vezi vuk tot a iesit ceva conform proiectului , am intrebat un amic din america si mi a zis ceva . cu cat e mai mica sera cu atat se raceste mai repede ?! >> cu cat e mai populata cu atat caldura se mentine , deci cum ar veni sa nu permiti aerului sa aiba o circulatie prea mare >> sa ai basement izolat de pamant cu ceva pe baza de aschii de lemn sau gravel >> sa ai doar geamuri necesare ca volum de aer , fara suplimentari.

cam asta e , what"s up Doc! :rofl: :rofl: :rofl:


prundis sau aschii de lemn suna mai bine decat ciment pe jos

iar in legatura cu marimea credema ca si eu regret ca n-am facut-o mai mare ,but hey , live and learn

iar nici unul din geamuri nu e in plus , ambele is necesare


Active Member
vuk a spus:
prundis sau aschii de lemn suna mai bine decat ciment pe jos

iar in legatura cu marimea credema ca si eu regret ca n-am facut-o mai mare ,but hey , live and learn

iar nici unul din geamuri nu e in plus , ambele is necesare
doar o idee macabră... vopsiți în negru... însă veți pierde lumină. Cu cât este mai mare cu atât este mai dificil de încălzit însă mai dificil de răcit.


New Member
Plan walipini

Mai inainte de toate, felicitari pentru proiect, cu siguranta iernile ce vor veni te vor gasi din ce in ce mai pregatit! Experienta castigata in iarna asta este de nepretuit si va constitui o baza solida de plecare spre definitivarea acestui proiect!

Nu stiu daca sa initiez un topic nou sau nu, pentru ca initierea proiectului meu va presupune o perioada mai indelungata de timp.

Va cer parerea asupra viabilitatii realizarii unui astfel de proiect.

1. Iazul - purtator de crap, folosit pentru aquaponica pe timpul verii si protector la iernat. O adancime de 2 m in punctul cel mai de jos. Este realizat cu membrana EPDM. La 0,5 m sub adancimea maxima a iazului ingrop cel putin 50 m teava PE , cu amandoua capetele in walipini. Scop- racirea apei din sistemul aquaponic din walipini pe perioada verii. Nu am nevoie de temperaturi excesive ... visul meu ar fi pastrav curcubeu

2. Walipini - la 2 m sub cota 0, nezidit. Parerea mea, pe care v-as ruga sa o comentati, este aceea ca o comunicare directa cu pamantul ar regla umiditatea excesiva. Pentru a proteja walipini, la o distanta de constructie se va realiza un drenaj . Pietris pe podea, iar intr-unul din colturi se va realiza o scurgere in caz de inundare. In walipini, pe langa sistemul aquaponic (B), am prevazut un numar de wicking-beds(A) . De asemenea,o voliera pentru gaini(C). Prezenta vietatilor, intr-o densitate acceptabila, cred eu ca ar contribui la o crestere a temperaturii interioare pe timpul iernii. Iluminat artificial dupa nevoie. O atentie deosebita acordata ventilatiei!

3. Gropile de compost- folosite ca surse de caldura pentru walipini pe timpul iernii. In walipini, rezervoare de tabla pline cu apa ce se recircula prin tevi de PE ingropate in compost. Inainte de a ajunge in rezervoarele radiante, PE trece prin wicking beds, eventual pe langa bazinul aquaponic cu pesti, pentru un surplus de temperatura. Sunt prevazute 3 gropi, pornite in momente diferite, pentru a realiza o continuitate pe timpul iernii ( o groapa va furniza caldura 6-8 saptamani)

Este un proiect deosebit de complex, a carui realizare va porni cu siguranta anul acesta prin edificarea iazului...


Well-Known Member
nu e rau , doar prezenta apei e ceva de studiat , parca nu prea se potriveste asa de bine alipit de sera, parerea mea


salut aquaponicaro

modelul 3d arata foarte bine , eu zic ca e gropile de compost (si/sau gunoi de grajd) sunt o idee foarte buna , iazul sa fie chiar asa de aproape de sera habar n-am daca e o idee buna sau nu

walipini nezidit , asta am vrut si eu inainte sa ma apuc ca ar fi redus costurile considerabil dar fara un perete stabil s-ar fi surpat 2m de pamant peste mine deci ai grija

ce dimensiuni va avea sera ?

gaini in sera ? daca vrei un animal ce sigur va ridica temperatura inauntru atunci mai bine un vitel sau doi , tot atata loc ar ocupa ca si gainile dar ar incalzi mult mai mult (sincer si eu m-am gandit la posibilitatea asta dar n-am vrut sa complic lucrurile , plus mirosul ar fi neplacut intr-o sera plina de plante frumoase

mult succes si sa ne tii la curent cu pozele proiectului


Well-Known Member
Are dreptate Vuk ,in armata stateam in grajdul de la vaca cand eram de paza , aveam geamuri peste tot si o caldura destul de buna , probabil si de la vaca cat si de la balega :wink: